If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8p^2+68p-36=0
a = 8; b = 68; c = -36;
Δ = b2-4ac
Δ = 682-4·8·(-36)
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-76}{2*8}=\frac{-144}{16} =-9 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+76}{2*8}=\frac{8}{16} =1/2 $
| 58=6v+52 | | 31.00r+47.40=1200 | | 3^(2x)=48 | | 3x+13/2=x=5 | | A+5=-5+5y | | 35=6x-61 | | d-3= -8 | | 3y-5=-86+5y | | 27+k=7(1+3k) | | p-3=74 | | 7(4x+7)=-5x+16 | | a2+14a+45=5 | | 6y-38=7y-54 | | 15+r=3(8r+5) | | 4=z-48 | | u+-1=0.65 | | 70x=400 | | 5b=b+76 | | -8x-11=2x-34 | | -6k-(1-8k)=19+7k | | 70x+25x=400+25x | | 31=b-40 | | b+243=837 | | 57=w-20 | | 25k=-900 | | -61=b-440 | | s+182=518 | | 56=u+26 | | 3-1/4n=25 | | 7^x-1=15 | | 3/22x+6=3x+9 | | g/2=10 |